Rayat shikshan sanstha's

Dahiwadi college Dahiwadi

Microbiology

Programme Specific Outcomes-

B.Sc. Microbiology Programme Specific Outcomes

1. Learners will understand the scope and historical developments in microbiology, characteristics 2 of different types of microorganisms and methods of their classification.

2. Students will understand ultrastructure of bacterial cell. Explain the nutritional and mechanisms of their transportation in the cell. requirements 3. Understand and use methods of visualizing microorganisms, controlling growth of microorganisms, isolation of microorganisms. Perform maintenance 4. isolation and of bacterial cultures. 5. Learners will understand and explain the body defense mechanisms and describe the immunological concepts with reference to infection, immunity.

Sr.	Program	Program Objectives	Program Specific Objectives
No.			
	B.Sc.	PO 1: Knowledge of different	F.Y.B.Sc: Students will be given
	Microbiology	aspects of Microbiology has become	the basic information that
		crucial and indispensable to	includes- Introduction of
		everyone in the society. Study of	microbiological world,
		microbes has become an integral	Classification of microorganisms,

part of education and human	Techniques of Microscopy,
progress. Building a foundation and	isolation, observation of
a sound knowledge-base of	morphology.
Microbiological principles among	
the future citizens of the country will	S.Y.B.Sc.: Students will be given
lead to an educated, intellectual and	the necessary information about
scientifically advanced society.	classification of specific group of
	microorganisms, Physiology and
PO 2: Microbiological tools have	genetics of microorganisms, and
been extensively used to study	applied microbiology.
different life processes and are	
cutting edge technologies. There is a	T.Y.B.Sc.: Students will be delt
continual demand for	with broad applied areas of
microbiologists in the work force –	microbiology that are interactive
education, industry and esearch.	with higher living forms. Four
Career opportunities for the graduate	such areas are –Virology,
students are available in	Immunology, Food and Industrial
manufacturing industry and research	Microbiology , agricultural
institutes at technical level	Microbiology. The sixth course
	will be Microbial genetics,
	Microbial biochemistry,
	Environmental Microbiology and
	medical microbiology. Over all
	objectives are • To enrich
	students' knowledge and train
	them in the pure microbial
	sciences • To introduce the
	concepts of application and
	research in Microbiology. • To
	inculcate sense of scientific
	responsibilities and social and

	environment awareness. • To help
	students build-up a progressive
	and successful career.

Course outcomes – B.Sc. Microbiology

Sr	Course	Course outcomes
no		
1.	F.Y.B.Sc.	CO 1: Students will be able to define Microbiology and
	Course I: Introduction to	Microorganisms. They will be able to identify different
	Microbiology	types of microorganisms. They will be able to describe the
		importance and applications of microbiology. They will be
		able to memorize and recite the names of microorganisms
		with genus and species.
2.	Course II : Microbial	Students will be able to define and state the principles
	Diversity	various Microbial growth medium. Students will be able to
		name and list the classification of microorganism
3	Course III : Bacteriology Students will be able to summarise the species concept	
		prokaryotes and re write it with the help of
		Chemotaxonomy, Numerical taxonomy. They will be able to
		defend the importance of genetic methods in taxonomy.
4	Course IV : Microbial	They will be able to distinguish between different classes of
	Biochemistry	enzymes and give examples of of each class. They will be
		able to distinguish between different classes of
		Carbohydrates, Nucleic acids, protein and Lipids give
		examples of of each class. Students will be able to illustrate
		and explains the metabolic pathways. They will be able to

	paraphrase the term oxidative and substrate level
	phosphorylation.
F.Y.B.S.c. Practicals	CO 1: Students will be trained to techniques in microbiology
	like staining, cultivation of microorganisms CO 2: They will
	be able to label the different parts of instruments like
	incubator, Microscope, Autoclave etc. They will be able to
	identify types of microorganisms with the help of
	microscope.
S. Y. B. Sc.	
Course V : Microbial	Students will be able to restate the importance of
Physiology and Metabolism	microorganisms in Industry. They will be able to give
	examples of industrially important micro-organisms and
	their applications. They will be able to explain process of
	Fermentation. They will be able to distinguish between the
	types of fermentations. They will be able to illustrate and
	label different parts of fermenters. They will be able to
	summaries the role of microorganisms in agriculture. They
	will be able to inter relate the microorganisms and elemental
	cycles in nature. Students will be able to understand effects
	of environmental factors on Microbial growth.
Course VI : Applied	Students will be able to explain both air and water
Microbiology	microflora. They will be able to explain milk and food
	spoilage due to micro-organisms. They will be able to
	distinguish between air water microflora. They will be able
	to summarize different techniques to measure the air and
	water microflora and interpret the results. Students will be
	able to explain both air and water microflora. They will be
	able to distinguish between air water microflora. They will
	be able to summaries different techniques to measure the air

	and water microflora and interpret the results.
Course VII : Microb	ial Students will be able to summaries the development of
Genetics and Molecu	ar genetics. They will be able to paraphrase the concept of
Biology	gene. They will be able to interpret the central dogma of
	molecular biology . They will be able to explain the cellular
	processes like DNA replication, transcription and
	translation. They will be able to inter relate the cause of
	adaptation, evolution and cancer with the change in genetic
	inheritance
Course VIII : Basics	in Students will be able to define the term immunology. They
Medical Microbiology a	nd will be able to list out components of immune system and
Immunology	describe them in detail. They will be able to distinguish
	between humoral and cell specific immunity and innate and
	adaptive immunity. Students will be trained with various
	techniques in clinical Microbiology like isolation and
	identification of pathogen by classical method .
S.Y.B.S.c. Practicals	Practical for the second year students will be carried out
	Serological test Biochemical test also be less defined i.e.
	kept more flexible, designed to evolve project themes on
	environment, agriculture and pollution aspects and acquiring
	laboratory related skills These aspects can be practiced
	better while carrying out the Tour reports.
T.Y.B.Sc.	
Course IX : Virology	Students will understand about structures of viruses,
	Isolation cultivation and purification of viruses and methods
	of enumeration of viruses. Students will understand about
	Cancer.
Course X : Immunology	Students will understand about Immunology and Immune
	system . well Knowledge of Immune system cell , APC ,
	primary and secondary organs of immune system. Students

	will understand about molecular mechanism of antibody
	production monoclonal antibodies, production,
	Hypersensitivity , immunological tolerances and
	autoimmunity.
Course XI : Food and	Students will be able to define and analyses the role
industrial microbiology	microorganisms in dairy, food, and environment. Students
	will be able to define fermentation. CO 2: They will be able
	to describe process of industrial fermentation. They will be
	able to understand the role of bioreactor in fermentation.
	They will understand about strain improvement and
	microbiological assays. They will be able to describe and
	apply process of food preservation.
Course XII : Agricultural	Students will understand the role of microorganisms in
microbiology	elemental cycles, Microbial interaction, Methods of
	Productions of Manure and compost, standards of city
	compost and vermicompost. Students will understand about
	Biofertilizers, Biopesticides, Plant pathology and plant
	diseases.
Course XIII : Microbial	Students will be able to extend their study from prokaryotic
Genetics	gene expression to eukaryotic gene expression. They will be
	able to describe and interpret various techniques of gene
	mapping and able to solve problems based on it. Students
	will be able to define recombinant DNA technology (RDT)
	and state their applications. Students will be able to explain
	the various steps in RDT.
Course XIV : Microbial	Students will be able to extend their study in enzymology
Biochemistry	with respect to identification and purification of enzyme.
	They will be able to describe and generalize the role of co
	enzyme in enzyme catalysis. Students will be able to
	interrelate between anabolism and catabolism. Students will
	be able to elaborate their study about bioenergetics

Course XV : Environmental	Students will be able to extend their study in Sewage
Microbiology	microbiology, treatment of waste, biological safety in
	laboratory, environmental Monitoring, Bioremediation and
	Bioleaching.
Course XVI : Medical	Students will be able to organize diseases with respect to
Microbiology	system. They will be able to categories disease causing
	organisms like bacterial, fungal, viral etc. They will be able
	to match diseases and their causative agents They will able
	to understand the role antibiotics in the irradiation of disease
	and resistance generate against them
Practicals I	Isolation of coliphages from sewage.
Virology and microbial	Effect of U.V. light on bacteria and graphical presentation of
genetics	result.
	Isolation of auxotrophic mutants by replica plate technique
	Transfer of genetic material by transformation in <i>E.coli</i>
	Isolation of chromosomal DNA from bacteria (J. Marmurs
	method or by Phenol
	chloroform method)
	Electrophoretic separation of DNA.
	Isolation of streptomycin - resistant mutants (gradient plate
	technique)
	Testing of carcinogenicity of a substance by Ame's test.
Practicals II	Assay of amylase by DNSA method (graphical estimation)
Food And Industrial	Bio-assay of Vitamin B12
microbiology	Bio-assay of Penicillin.
	Production of wine and examination for pH, colour and
	alcohol content.
	Citric acid fermentation, recovery and estimation by
	titration.
	Amylase production by using <i>Bacillus</i> species.
	Isolation of lactic acid bacteria from fermented food.

	Examination of milk by Direct microscopic count (DMC)
Practicals III	Isolation of Azotobacter from soil.
Agriculture and	Isolation of Xanthomonas from infected citrus fruit.
environmental Microbiology	Isolation of Rhizobium from root nodules.
	Isolation of phosphate solublising bacteria from soil.
	Determination of BOD of sewage
	Estimation of Calcium and Magnesium from soil (EDTA
	method)
	Determination of organic carbon content of soil (Walkley
	and Black method)
	Determination of COD of sewage.