

ISO-OSI Reference Model

ISO and OSI Defined

ISO

International Standards Organization

OSI

Open Systems Interconnect

OSI Model Background

- Introduced in 1978 and revised in 1984
- Formulates the communication process into structured layers
- The model acts as a frame of reference in the design of communications and networking products

The Layered Approach to Communication

Division of Layers

Communication Between Layers

The Role of Layers in Point-topoint Communication

Virtual Communication Between Layers

7. Application Layer

- Purpose
 - User application to network service interface
- Examples
 - File request from server
 - E-mail services
 - etc.

Application Layer Function

- General network access
- Flow control
- Error recovery

6. Presentation Layer

- Purpose
 - Formats data for exchange between points of communication
 - Ex: Between nodes in a network
- Example:
 - Redirector software
 - Formats for transmission to the server

Presentation Layer Function

- Protocol conversion
- Data translation
- Encryption
- Character set conversion
- Expansion of graphics command

5. Session Layer

- Purpose
 - Oversee a communication session
 - Establish
 - Maintain
 - Terminate

Session Layer Function

- Performs name recognition and related security
- Synchronization between sender and receiver
- Assignment of time for transmission
 - Start time
 - End time etc.

4. Transport Layer

- Purpose
 - Repackage proper and efficient delivery of packages
 - Error free
 - In sequence
 - Without duplication

Transport Layer Function

- For sending data
 - Repackage the message to fit into packets
 - Split long messages
 - Assemble small messages
- On receiving data
 - Perform the reverse
 - Send an acknowledgment to the sender
- Solve packet problems
 - During transmission and reception

3. Network Layer

- Purpose
 - Addressing and routing the packets
- Example application at the router
 - If the packet size is large, splits into small packets

Network Layer Function

- Address messages
- Address translation from logical to physical
 - Ex: nganesa ----> 102.13.345.25
- Routing of data
 - Based on priority
 - Best path at the time of transmission
- Congestion control

2. Data Link Layer

- Purpose
 - Manages the flow of data over the physical media
- Responsible for error-free transmission over the physical media
- Assures error-free data submission to the Network Layer

Data Link Layer Function

- Point of origin
 - Packages data for transmission over physical line
- Receiving end
 - Packages data for submission to the network layer
- Deals with network transmission protocols
 - IEEE 802. protocols

Data Link Layer Subdivision

- Improvement to ISO Model
- Logical Link Control (LLC) sub-layer
 - Manages service access points (logical link)
 - Error and flow control
- Media Access Control (MAC) sub-layer
 - Applies directly to network card communication
 - Access control

Media Access Control Application

Network Interface Card driver

1. Physical Layer

- Purpose
 - Deals with the transmission of 0s and 1s over the physical media
 - Translation of bits into signals
- Example
 - Pulse duration determination
 - Transmission synchronization
 - etc.

Physical Layer Function

- Encode bits into signals
 - Carry data from the h higher layers
- Define the interface to the card
 - Electrical
 - Mechanical
 - Functional
 - Example: Pin count on the connector